THE GEOLOGY OF NEW JERSEY

For an area of its size, New Jersey has a uniquely diverse and interesting geology. The state can be divided into four regions, known as physiographic provinces, which have distinctive rocks and landforms.

The Valley and Ridge Province is underlain by faulted and folded sedimentary layers of sandstone, shale, and limestone that range in age from Cambrian to Devonian (570 to 354 million years old). These rocks originated as sand, mud, and lime sediment deposited in coastal seas and floodplains during Ordovician time (approximately 450 million years ago) and again during Pennsylvanian and Permian time (approximately 300 million years ago). The rocks were deformed by compression into folds and thrust along faults. As a result of deformation, the originally flat sedimentary layers were tilted and now outcrop as linear belts.

Alternation of belts of erosion-resistant sandstone and easily-eroded shale and limestone creates the long, parallel northeast-southwest trending ridges and valleys characteristic of this province. Resistant sandstone and siltstone layers underlie Kittatinny Mountain and Wallpack Ridge; shale and limestone underlie the valley of Flat Brook, the Delaware Valley upstream from the Delaware Water Gap, and the broad valley between Kittatinny Mountain and the Highlands to the east.

The limestone is quarried for construction material and cement aggregate. Some of the limestone units yield large quantities of ground water. The shales and sandstones and some limestone units are generally less productive aquifers.

On the northern edge of the Valley and Ridge Province, along a line from Franklin through Andover to the Delaware River just north of Phillipsburg, an irregular escarpment averaging 300 feet in height marks the boundary of the Highlands Province. The Highlands are underlain predominantly by granite, gneiss, and small amounts of marble of Precambrian age. These rocks, the oldest in New Jersey, were formed between 1.3 billion and 750 million years ago by melting and recrystallization of sedimentary rocks that were deeply buried, subjected to high pressure and temperature, and intensely deformed. The Precambrian rocks are interbedded with layers of sandstone, silt, and clay composed alternately in deltaic and marine environments as sea level fluctuated during Cretaceous and Tertiary time. These layers of sediment outcrop in irregular bands that trend northeast-southwest. Wide areas of the Coastal Plain are covered by a thin veneer of Late Tertiary and Quaternary sand and gravel deposited by rivers.

The topography of the Coastal Plain generally is flat to very gently undulating. However, erosion-resistant gravel or iron-cemented sediment underlie upland areas and isolated hills, such as the Atlantic Highlands, Telegraph Hill, Mount Holly, and Arneys Mount.

Coastal Plain sediments have been mined in the past for iron ore, glass sand, foundry sand, ceramic and brick clay, the mineral claustronite for use in fertilizer, and titanium from the mineral ilmenite in sand deposits. Today the Coastal Plain sediments continue to supply glass sand and are extensively mined for sand and gravel construction material. The sand formations are productive aquifers and important ground water reservoirs.

Within each of these physiographic provinces there have been major changes during the past two million years. In this time New Jersey has undergone three glaciations. The last glacier (the late Wisconsinan advance) began to melt back from its maximum extent approximately 20,000 years ago. North of the limit of the last glaciation much of the surface is covered by glacial deposits. Upland areas in this region are thinly draped with till, an unsorted mixture of sand, clay and boulders deposited directly from the glacier. Valleys and lowlands are filled with up to 350 feet of sand and gravel deposited from glacial meltwater and silt and clay that settled in glacial lakes. The sand and gravel deposits are important sources of construction material, and productive aquifers are found where sand and gravel occur in unconsolidated deposits.

South of the limit of the Wisconsinan glaciation, there are discontinuous patches of till from older glaciations. These deposits occur on uplands and are found as far south as the Somerville area. During each glaciation, sea level dropped as water from the oceans was transferred to ice sheets. Rivers extended and deepened their valleys to conform to the lower sea levels. When the ice sheets melted, sea level rose, flooding the deepened valleys and establishing new shorelines. The present configuration of the coast is the result of the rapid post-glacial rise in sea level, which slowed approximately 6,000 years ago. Many of the estuaries along the coast are the drowned lower reaches of former river valleys. To the east of the mainland, barrier islands were formed, and continue to be shaped by erosion and deposition of beach sand by waves and currents. Mud and sand transported by rivers and from the offshore is gradually filling the bays and estuaries between the mainland and the barrier islands, creating extensive wetlands.